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Abstract. Taking into account the interaction of an electron with interface optical phonons as
well as bulk longitudinal optical phonons, we study the cyclotron resonance of magnetopolarons
at the interfaces of polar crystals. We consider both the absorption and emission processes in our
calculation using the Green’s function method at finite temperatures. Consequently, different
temperature characteristics of the cyclotron resonance mass and resonance frequency are found
on either side of the off-resonance magnetic field region.

1. Introduction

Over the past few decades, there has been considerable research interest in the problem
of surface and interface polarons in polar crystals, especially as regards the influence of
magnetic fields and temperatures on the physical properties of the polaron [1–18]. The
temperature dependence of the polaron mass in the absence of magnetic fields has been
investigated theoretically by many authors, but the existing theories are still controversial.
The various assumptions made regarding the mechanism of the electron–phonon interaction
and the different theoretical methods applied have led to significantly different predictions
for the behaviour of the polaron mass with temperature. In the early studies, using the
Hartree method, Yokota calculated the energies of a polaron approximately and came
to the conclusion that the polaron mass decreases with increasing temperature [7]; this
picture was subsequently also obtained in references [8–10]. However, by using Gurari’s
variational method, Fulton obtained the opposite result [11]: the polaron mass was found
to be an increasing function of temperature at finite temperatures; this was also the
finding in references [1], [6], and [12]. A compromise between these opposite temperature
dependences of the polaron mass was obtained by extending Feynman’s polaron theory [13]
to finite temperatures [14]. With this theory it was found that with increasing temperature
the polaron mass first increases at low temperature, subsequently reaches a maximum value
at a certain temperature, and at still higher temperature starts to decrease [14, 15]. However,
for the presence of magnetic fields the theoretical efforts aimed at investigating the cyclotron
resonances of the magnetopolaron have been carried out only for zero temperature [16–18].
Accordingly, it seems to be a worthwhile endeavour to study both the temperature and the
magnetic field dependence of magnetopolarons in detail, using a more powerful theoretical
method.
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Electron–optical phonon interaction in polar crystals plays an important role in
determining the physical characteristics of polarons. It is generally accepted that in bulk
crystals the effective mass of an electron is enhanced by the virtual coupling of a quasi-free
electron with bulk longitudinal optical (BO) phonons. However, even in investigations of
the heterostructures, only electron–BO phonon interaction was considered and electron–
interface optical (IO) phonon interaction was neglected (see for instance references [2, 15],
and [17]). Recently, it was reported that, in obtaining the potential induced by the electron–
phonon interaction, IO phonons must be considered together with BO phonons in quasi-
two-dimensional (Q2D) systems, especially when the distance between the electron and the
interface (or surface) is comparable to the radius of the polaron [19–21].

In this work, taking into account the interaction of an electron with both BO and IO
phonons, we investigate theoretically the cyclotron resonance of polarons at the interfaces
of polar crystals by using the powerful Green’s function method for finite temperatures.
Considering both the absorption resonance and the emission resonance, the dependence of
the cyclotron resonance mass and of the cyclotron resonance frequency of the interface
polaron on magnetic fields and temperatures around, but excluding, the resonant magnetic
field region is studied. The resonant region was treated previously using the Rayleigh–
Schr̈odinger perturbation method [5]. The calculated magnetic field dependence of the
cyclotron resonance at zero temperature is consistent with the result obtained by a memory
function approach [18]. In addition, we have obtained some new temperature characteristics
of the resonance mass and resonance frequency in the presence of magnetic fields: the
resonance mass (resonance frequency) increases (decreases) with temperature below the
resonant field but decreases (increases) with temperature above the resonant field.

The reminder of the paper is organized as follows. In section 2 we introduce the
effective Hamiltonian of the system considered, and section 3 provides a formulation for
calculating the cyclotron resonance mass and cyclotron resonance frequency of the interface
magnetopolaron. Our numerical results and a discussion are given in section 4. Finally, we
will provide a brief conclusion in section 5.

2. The effective Hamiltonian

We consider a heterostructure composed of two semi-infinite polar crystals: polar crystal
1 in the z > 0 half-space and polar crystal 2 in thez < 0 half-space, whose interface is
the xy-plane. For simplicity, the electron motion is restricted to the half-spacez > 0, by
assuming that there is an infinitely high barrier created by crystal 2. The static uniform
magnetic fieldB = (0, 0, B) is applied along thez-direction and is described by a vector
potential in the Landau gaugeA = B(0, x,0). In this work, we take into account the
interaction of an electron with both BO phonons in thez > 0 half-space and IO phonons.
Also, we include an image potential produced by the polarization induced on the interface
due to the electron. Under the isotropic effective-mass approximation, the Hamiltonian of
our electron–phonon system can be written as follows [19]:

H = H‖ +H⊥ H‖ = H0+HI HI = He−BO +He−IO (1)

where

H0 = p2
x

2mb
+ 1

2mb

(
py + β

2

2
x

)2

+
∑
k

h̄ωBOa
+
k ak +

∑
q

h̄ωIOb
+
q bq (2)

H⊥ =
p2
z

2mb
+ e2(ε∞1− ε∞2)

4zε∞1(ε∞1+ ε∞2)
(3)
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and

He−BO =
∑
k

(
V ∗k sin(zkz) exp(−ik‖ · ρ)a+k + HC

)
(4)

He−IO =
∑
q

(
C∗q exp(−qz) exp(−iq · ρ)b+q + HC

)
(5)

are the contributions from the electron interaction with BO phonons and with IO phonons,
respectively. In the above equations, the following notation has been used:

V ∗k =
i

|k|
(

4πe2

εV
h̄ωBO

)1/2

C∗q = i

(
πe2

qε∗S
h̄ωIO

)1/2

(6)

1

ε
= 1

ε∞1
− 1

ε01

1

ε∗
= 2

ε∞1+ ε∞2
− 2

ε01+ ε02
β2 = 2eB

c
(7)

andρ = (x, y,0) is the projection of the electron position vector on thexy-plane. Also,
p = (px, py, pz) is the momentum of the electron,k = (k‖, kz) is the wave vector of
the BO phonons;q is the 2D wave vector of IO phonons,a+k (ak) and b+q (bq) are the
creation (annihilation) operators of BO and IO phonons, respectively, andωBO andωIO
are the frequencies of BO phonons and IO phonons, respectively. The first two terms in
H0 describe the kinetic energy of the 2D motion of the electron in thexy-plane, which
forms Landau energy levels, and the third and fourth terms are the energies of BO and
IO phonons, respectively. The first term inH⊥ is the kinetic energy of the electron in the
z-direction, and the second one is the image potential. The volume of crystal 1 is denoted
by V , and the area of its interface is denoted byS. Also, ε∞1 (ε∞2) andε01 (ε02) are the
optical and static dielectric constants of crystal 1 (crystal 2), respectively.

The relation between the frequency of bulk transverse optical phononsωTO and that of
the BO phononsωBO is determined by the Lyddane–Sachs–Teller relation

ω2
BO

ω2
TO

= ε01

ε∞1
(8)

and the frequencies of BO and IO phonons satisfy the equality

ω2
BO = ω2

TO

ε∞1(ε01+ ε02)

ε01(ε∞1+ ε∞2)
. (9)

The coupling constants of the electron with BO phonons and the electron with IO phonons
are given by

αB = e2

2h̄

(
2mb
h̄ωBO

)1/2 1

ε
αI = e2

2h̄

(
2mb
h̄ωIO

)1/2 1

ε∗
. (10)

The cyclotron resonance frequency of an electron with the bare band effective massmb is

ωc = eB

mbc
. (11)

For subsequent usage, we define

λ2
B =

ωc

ωBO
λ2
I =

ωc

ωIO
. (12)

At finite temperatures, we choose|nk, nq〉 as the wavefunction for describing the phonon
state, in whichnk andnq represent the numbers of BO and IO phonons, respectively. When
the temperature is lower than the room temperature, even though the phonon frequency will
decrease with increasing temperature, we can still take them as constant because of the
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small relative change of the frequency (≈1%) [22]. Also, the energies of the interactions
between the electron and the phonons are much smaller than the phonon energy except in
the strong-coupling case. Accordingly, we may assume that the eigenvalues ofa+k ak and
b+q bq in the phonon state are approximately equal to the equilibrium values [10], i.e.

〈nk〉 = 〈a+k ak〉 =
1

exp(h̄ωBO/kBT )− 1
(13)

〈nq〉 = 〈b+q bq〉 =
1

exp(h̄ωIO/kBT )− 1
(14)

wherekB is the Boltzmann constant.
The unperturbed energy corresponding toH0 is given by

E(0)n = εn +
∑
k

〈nk〉h̄ωBO +
∑
q

〈nq〉h̄ωIO (15)

whereεn = (n+ 1
2)h̄ωc is the electron Landau level with the Landau quantum numbern. In

the limit of weak electron–phonon coupling,HI could be treated as a small perturbation. In
this case, it suffices to calculate the contributions to the electron proper self-energy part by
retaining the lowest-order skeleton diagram. Using the standard Green’s function method
[20], the total proper self-energy part of electron is given by

6∗(s, z, iωl) = 6∗BO(s, z, iωl)+6∗IO(s, z, iωl) (16)

where6∗BO(s, z, iωl) and6∗IO(s, z, ωl) are the electron self-energy parts corresponding to
theHe−BO andHe−IO , respectively [19], which are given as

6∗BO(s, z, iωl) = − 1

β

∑
s ′,k,νl′

G(0)[s ′, i(ωl − νl′)]|fs,s ′(z,k)|2D(0)
BO(k, iνl′)

= 1

h̄

∑
s ′,k

|fs,s ′(z,k)|2
[ 〈nk〉 + ns ′

iωl − ωs ′ + ωBO +
〈nk〉 + 1− ns ′

iωl − ωs ′ − ωBO

]
(17)

6∗IO(s, z, iωl) = − 1

β

∑
s ′,q,νl′

G(0)[s ′, i(ωl − νl′)]|fs,s ′(z, q)|2D(0)
IO(q, iνl′)

= 1

h̄

∑
s ′,q

|fs,s ′(z, q)|2
[ 〈nq〉 + ns ′

iωl − ωs ′ + ωIO +
〈nq〉 + 1− ns ′

iωl − ωs ′ − ωIO

]
. (18)

In the above equation,fs,s ′(z,k) andfs,s ′(z, q) are defined in reference [19],G(0)(s, iωl) and
D
(0)
BO/IO(k/q, iνl) are the Matsubara Green’s functions of free electrons and free phonons,

respectively, whereωl = (2l + 1)π/h̄β and νl = 2lπ/h̄β where l is an integer, and
ωs = (En − µ)/h̄ whereµ is the chemical potential, and〈ns〉 is the mean number of
electrons. We continue iωl analytically to the upper half of the complexω-plane and take
the formω = (E∗n−µ)/h̄. From Dyson’s equation, the retarded Green’s function is obtained
as [19]

GR(s, z, E∗n) =
1

E∗n − E(0)n −6∗(s, z, E∗n)
. (19)

The electron self-energy shift related toH‖ is given approximately by

1En(z) = 6∗(s, z, E∗n) = V (n)e−BO(z)+ V (n)e−IO(z). (20)

Then, we get the effective Hamiltonian in the form

Hn,eff (z) = E(0)n +
p2
z

2mb
+ V (n)eff (z) (21)



Cyclotron resonance of interface magnetopolarons 4861

where the effective potential is written as

V
(n)
eff (z) = Vim(z)+1En(z) (22)

whereVim(z) is the image-potential energy of the electron, which is given in the second
term of equation (3).

For simplicity, we take into account only the lowest subband ofH⊥, so the relevant
variational wavefunction with the variational parameterξn can be selected as [20]

φn(z) = 2ξ3/2
n exp(−ξnz) (23)

and we finally come to its energy for the state with Landau quantum numbern as follows:

En = 〈φn(z)|Hn,eff (z)|φn(z)〉

=
(
n+ 1

2

)
h̄ωc +

∑
k

〈nk〉h̄ωBO +
∑
q

〈nq〉h̄ωIO + h̄ξ2
n

2mb

+ ξne
2(ε∞1− ε∞2)

4ε∞1(ε∞1+ ε∞2)
+ E(n)e−BO(ξn)+ E(n)e−IO(ξn). (24)

The last two terms in equation (24) are the self-energies of the polaron contributed by
the interaction of the electron with BO phonons and IO phonons, respectively, and the
variational parameterξn can be determined using

∂En(ξn)

∂ξn
= 0. (25)

The method of calculating the self-energy of the polaron is similar to that of our previous
paper [20], and is not repeated here for the sake of conciseness.

3. Cyclotron frequency and cyclotron mass

In this work, we only consider the cyclotron resonance between the lowest subbands, which
is of major interest in most experimental and theoretical studies. The cyclotron resonance
frequencyω∗c is defined to be

ω∗c =
E1(ξ1)− E0(ξ0)

h̄
. (26)

After a tedious but direct calculation, we obtain the self-energies of the interface magneto-
polaron as

E
(0)
e−BO(IO)(ξ0) = −αB(I)λB(I)h̄ωBO(IO)

{∑
l=1

1

l!

( 〈nk(q)〉 + 1

lλ2
B(I) + 1

+ 〈nk(q)〉
lλ2
B(I) − 1

)
IB(I)(l, ξ0)

}
(27)

E
(1)
e−BO(IO)(ξ1) = −αB(I)λB(I)h̄ωBO(IO)

×
{ ∑
l=1,l 6=0

l + 1

l!

( 〈nk(q)〉 + 1

lλ2
B(I) + 1

+ 〈nk(q)〉
lλ2
B(I) − 1

)
IB(I)(l, ξ1)

+
∑

l=0,l 6=1

1

l!

( 〈nk(q)〉 + 1

(l − 1)λ2
B(I) + 1

+ 〈nk(q)〉
(l − 1)λ2

B(I) − 1

)
IB(I)(l + 1, ξ1)

−
∑

l=1,l 6=0

2

l!

( 〈nk(q)〉 + 1

lλ2
B(I) + 1

+ 〈nk(q)〉
lλ2
B(I) − 1

)
IB(I)(l + 1, ξ1)

}
(28)
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where

IB(l, ξn) =
(√

h̄ξn

β

)2l+1 ∫ ∞
0

du
u3+ 3u2+ 3u

(1+ u)3 u2l exp

(
−h̄ξ

2
n

β2
u2

)
(29)

II (l, ξn) =
(√

h̄ξn

β

)2l+1 ∫ ∞
0

du
u2l

(1+ u)3 exp

(
−h̄ξ

2
n

β2
u2

)
. (30)

In the above equation, we have taken into account both the absorption resonance and the
emission resonance. The terms containing〈n〉 + 1 correspond to the emission of a virtual
phonon during the electron–phonon interaction, and the terms containing〈n〉 correspond to
the absorption of a virtual phonon in the process of electron–phonon interaction. In the
past, most studies have neglected the absorption resonance [11], but our numerical results
show that both the processes must be considered at the same time at finite temperature,
especially for the magnetopolaron.

Once the cyclotron resonance frequency, equation (26), is determined, the cyclotron
resonance massm∗ of the interface magnetopolaron can be also obtained, using the
relation [18]

m∗

mb
= ωc

ω∗c
. (31)

4. Numerical results and discussion

We choose a GaAs(crystal 1)/GaSb(crystal 2) heterostructure as a model for our numerical
computation. The material parameters are taken from reference [1]: for GaAs,ε01 = 12.83,
ε∞1 = 10.90, h̄ωBO1 = 36.7 meV, andαBO1 = 0.0675; for GaSb,ε02 = 15.69, ε∞2 =
14.44, h̄ωBO2 = 29.8 meV, andαBO2 = 0.025.

Figure 1. The cyclotron resonance massm∗ of the interface magnetopolaron as a function of
the magnetic field for temperaturesT = 0.0, 0.7, and 1.0 TD whereTD = 426 K; m∗ and the
magnetic field are in units ofmb and T, respectively.

In figure 1 the cyclotron resonance massm∗ of the interface magnetopolaron is depicted
as a function of the magnetic field, in units ofmb, where the resonant magnetic field
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region,BR ∼ 20.8 T, has been excluded. Several temperaturesT have been considered;
T = 0, 0.7, and 1.0, in units of the Debye temperatureTD, which is about 426 K for GaAs.
Our numerical results show that for a given temperature the cyclotron resonance mass first
slowly increases with the magnetic fields, and then increases sharply on approaching closer
to the resonant region. After passing the resonant fields, the cyclotron resonance mass
behaves oppositely to in the case below the resonance. It is also seen that each resonance
mass saturates to a constant at very high magnetic fields. This tendency is consistent
with the previous result of reference [18] obtained by a memory function approach at zero
temperature. The resonant region was excluded in our numerical calculation since the
Green’s function method used fails to converge properly near the resonance. However, it
has been studied in our previous paper utilizing another method [5]. Although we have
not shown this, we have also observed that for a fixed temperature the cyclotron resonance
frequency of the interface magnetopolaron decreases as the resonance field is approached
from belowBR, while it decreases for magnetic fields above the resonance value.

Figure 2. The temperature dependence of the cyclotron resonance massm∗ below the resonant
field BR ∼ 20.8 T for several magnetic fields,B = 15, 17, and 18 T: (a) including both BO and
IO phonon contributions; (b) including only the BO contribution. Here,m∗ and the temperature
are in units ofmb andTD = 426 K, respectively.

Next, in order to see the temperature characteristics, we plot the cyclotron resonance
massm∗ in figures 2(a) and 2(b) as a function of temperature for several magnetic
fields B = 15, 17, and 18 T, belowBR. Figure 2(a) includes the effects of both BO
and IO phonons. On the other hand, only the BO phonon contribution is included in
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Figure 3. As figure 2, but for the fieldsB = 22, 24, and 30 T chosen above the resonant
magnetic fieldBR .

figure 2(b). And, the same figures are presented in figures 3(a) and 3(b) for aboveBR,
for B = 22, 24, and 30 T. First of all, opposite temperature dependences of the cyclotron
resonance mass below and above the resonant magnetic field region have been found. Below
the resonance field,m∗ increases with temperature. On the other hand, whenB > BR, m∗

decreases with temperature. This temperature behaviour is consistent with our previous
result obtained in investigating the potential induced by electron–phonon interaction [21].
By comparing figures 2(a) and 2(b) one can see that the contribution from IO phonons
is not negligible, and furthermore the temperature characteristics are largely determined
by the electron–IO phonon interaction. Also, the IO phonon effect is more sensitive to
the magnetic fields. A similar feature is seen for theB > BR case in figures 3(a) and
3(b), but in this case the IO phonon effect is negative; that is, it reduces the values ofm∗

(see equations (27) and (28)). Although they are not illustrated, we have also seen different
temperature characteristics for the resonance frequency:ω∗c decreases with temperature when
B < BR but it increases with temperature whenB > BR. The closer the magnetic field is
to the resonant field, the steeper the change of the cyclotron resonance frequency is with
temperature change. Also, at very high magnetic fields, the cyclotron resonance frequency
of the magnetopolaron remains constant as the temperature changes, which corresponds to
the saturation of the polar phonons.

As we mentioned in the introduction, there appears to be controversy in the literature
as regards to the temperature characteristics of the polaron; the results vary depending on



Cyclotron resonance of interface magnetopolarons 4865

the various electron–phonon interaction mechanisms assumed and the different theoretical
methods used. In the present paper we have obtained interesting opposite temperature
characteristics of the cyclotron resonance mass of magnetopolarons on either side of
the off-resonance region by fully considering the electron–phonon interaction, using a
powerful Green’s function method. To our knowledge, few efforts have been made
to investigate the temperature dependence of the cyclotron resonance of the polaron in
the presence of magnetic fields. Neither have experiments been carried out to study
simultaneously the temperature and magnetic field dependences of the cyclotron resonance
of the magnetopolaron at finite temperatures. Accordingly, our theoretical outcome may
guide further experimental and theoretical investigation of the temperature characteristics
of the interface magnetopolaron over the whole magnetic field region.

5. Conclusions

We have taken into account the interaction of an electron with both BO phonons and IO
phonons to study the cyclotron resonance of a magnetopolaron at the interface of a polar
crystal by using the Green’s function method at finite temperatures. We have investigated
the dependence of the cyclotron resonance mass and cyclotron resonance frequency of the
interface magnetopolaron on magnetic field and temperature in the off-resonance magnetic
field regions by incorporating both the absorption resonance and emission resonance.
Explicit expressions have been obtained for the effective Hamiltonian of our system, and
equations for calculating the cyclotron resonance mass and cyclotron resonance frequency
have also been derived. Our numerical results show that the cyclotron resonance mass
(cyclotron resonance frequency) is an increasing (decreasing) function of temperature
when the magnetic field is lower than the resonant magnetic field, but it is a decreasing
(increasing) function of the temperature when the magnetic field is higher than the resonant
magnetic field. Also, the effects of IO phonons are seen to be important in determining
the large-polaron characteristics near the interface. The interesting opposite temperature
behaviour of the interface magnetopolaron obtained for the off-resonance regions merits
future experiments to support this result.
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